Numerical solutions of 2-D incompressible driven cavity flow with wavy bottom surface

نویسندگان

  • K. M. Salah Uddin
  • Litan Kumar Saha
چکیده

In the present numerical study is devoted to investigate the lid-driven cavity flow with wavy bottom surface. The cavity upper wall is moving with a uniform velocity by unity and the other walls are no-slip. The physical problem is represented mathematically by a set of governing equations and the developed mathematical model is solved by employing Galerkin weighted residual method of finite element formulation. The wide ranges of governing parameters, i. e., the Reynolds number (Re), and the number of undulations (λ) on the flow structures are investigated in detail. The behavior of the force coefficient Cf also has been examined. Streamline plots provide the details of fluid flow. The fluid contained inside a squared cavity is set into motion by the top wall which is sliding at constant velocity from left to right and the undulation which was induced at the bottom surface. It is found that these parameters have significant effect on the flow fields in the cavity. Furthermore, the trends of skin friction for different values of the aforementioned parameters are presented in this investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Flow and Heat Transfer in a Square Driven Cavity

A numerical approach called “SIMPLER” is used to investigate the  flow and heat transfer characteristics in a square driven cavity. The two-dimensional incompressible Navier-Stokes equations were solved and the results are depicted as contour plots of stream function, vorticity, and total pressure for Reynolds numbers from 1 to 10000. At the higher values of Reynolds number, an inviscid core re...

متن کامل

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers

Numerical calculations of the 2-D steady incompressible driven cavity flow are presented. The NavierStokes equations in streamfunction and vorticity formulation are solved numerically using a fine uniform grid mesh of 601 × 601. The steady driven cavity solutions are computed for Re ≤ 21,000 with a maximum absolute residuals of the governing equations that were less than 10−10. A new quaternary...

متن کامل

EFFECT OF WAVY WALL ON CONVECTION HEAT TRANSFER OF WATER-AL2O3 NANOFLUID IN A LID-DRIVEN CAVITY USING LATTICE BOLTZMANN METHOD

Abstract   In the present study, the effects of wavy wall’s properties on mixed convection heat transfer of Water-Al2O3 Nanofluid in a lid-driven cavity are investigated using the Lattice Boltzmann Method. The Boundary Fitting Method with second order accuracy at both velocity and temperature fields is used to simulate the curved boundaries in the LBM. The problem is investigated for different ...

متن کامل

Transitional cylindrical swirling flow in presence of a flat free surface

This article is devoted to the study of an incompressible viscous flow of a fluid partly enclosed in a cylindrical container with an open top surface and driven by the constant rotation of the bottom wall. Such type of flows belongs to a group of recirculating lid-driven cavity flows with geometrical axisymmetry and of the prescribed boundary conditions of Dirichlet type—no-slip on the cavity w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014